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Dynamics of solitary waves in diatomic chains with 
long-range Kac-Baker interactions 

C Tchawoua, T C Kofane and A S  Bokosah 
Laboratoire de Micanique, Facult6 des Sciences, Universit6 de Yaounde, BP 812, 
Yaoundt, Cameroun 

Received 19 November 1992, in final form 10 June 1993 

Abstract. An analytical study of the influence of the long-range atomic interactions on the 
properties of soliton-like excitations in a one-dimensional (w) anharmonic chaii is 
presented. The model chosen is a nonlinear diatomic chain in which atoms are assumed to 
interact via a cubic and/or quartic nonlinear short-range potential and a linear long-range 
Ka-Baker type pair potential. In the continuum approximation, using scaling arguments, 
it is shown that the coupled nonlinear difference-differential equations for the motion of 
the two different masses, can be decoupled and reduced to a generalized Boussinesq 
equation which admits supersonic and subsonic amustic kink (pulse) solitons, long- 
wavelenth amustic oscillating solutions of breather type and optical envelope type solitons 
of a nonlinear Schadinger equation. A possible altemation of envelope and dark is found 
fhat can exist not only for acoustic mode but also for optical mode. 

1. Introduction 

The dynamics of nonlinear lattices and the related soliton-like excitations have been 
intensively studied since the introduction of solitons [l]. More recently, attempts have 
been made to study lattices, such as metals or ferroelectrics [2], in which long-range 
interatomic forces may be significant. Using a 1D lattice with long-range coupling of 
Lennard-Jones type, Ishimon [3] showed that the value of the force range parameter 
contributes not to the nonlinear term but to the dispersive terms in the equation of 
propagation in the continuum limit. In magnetic systems it is well known that in the 
presence of the phase transition in a ID system, the model must consist of very long- 
range interaction forces [4]. A well studied example of long-range interaction 
potential is the so-called Kac-Baker [5,6] potential in which the interactions between 
particles fall off exponentially as the distance between them increases. It is commonly 
encountered in systems undergoing phase transition and has been recently used to 
investigate thermodynamic properties, in connection with topological soliton exci- 
tations, of a ID 44 system in continuum [A as well as in discrete limits [SI. It has also 
been used to describe the dynamics of solitons in an anharmonic non-magnetic chain 
[9], a sine-Gordon system [lo] and a magnetic Heisenberg-chain [ll]. Most of the 
aforementioned studies have been limited to models with one atom per unit cell. 
These studies could also be applied to ferroelectric crystals like SrTiO,, BaTi0, and 
KTaOs that have got a diatomic structure along their (100) direction and present 
structural phase transition, soft mode and central peak phenomena [12]. 
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Since the pioneering work of Zubusky and Deem [13] on optical excitations in 
monoatomic chains, the study of nonlinear acoustic and optical excitations in diatomic 
chains has been of considerable interest [Z, 14-23]. However, because of mathemati- 
cal complexities, most of the models studied to date have been limited to one 
dimension and to nearest-neighbour interactions only. 

This paper is devoted to a further study of the dynamics of nonlinear quasi-ID 
diatomic systems in which the long-range interaction of Kac-Baker type plays a 
significant role. In section 2, we present the model Hamiltonian and the derived 
equations of motion in the continuum approximation. In section 3 we apply a 
decoupliig ansa& (section 3.1) to obtain the kink or pulse soliton solutions, the long- 
wavelength acoustic oscillatory excitations of breather type (section 3.2) and optical 
envelope type (section 3.3). The infiuence of long-range interactions on the conditions 
of existence of the soliton solutions of modulated-wave type are examined simul- 
taneously. Section 4 gives concluding remarks and a brief summary. 

2. The model Hamiltonian and equations of motion 

We consider a ID chain with two ions (atoms) of masses Ml and Mz per unit cell with a 
spacing of '2a' between cells (U is the lattice spacing). The Hamiltonian for the discrete 
lattice is taken to be 

H= (1/2) (MlCz +A4263 + (UlE + U,) 
n " 

where ti., i n (un ,  6") are the displacement from the equilibrium position, respectively 
the velocity for odd (even) ions of masses MI (443 of the nth cell. These ions are 
assumed to interact through linear long-range pair potentials V, and V, and through 
nonlinear short-range potentials UIn(ua-un) and U h ( u n + l - ~ n ) .  V,, and Vbj are 
taken to be the Kac-Baker form in which the interactions between ions fall off 
exponentially as exp(-ylxl) as the distancex between them increases: 

The coefficients Jl and J2 are constants measuring the elastic energy of the lattice. The 
parameter S= exp( - y)  defines the range of interaction with 0 G S < 1 and can be seen 
as a measure of the ratio Vlnj+l/Vlnj(V%,+l/V,j) of the elastic coupling coefficient 
between the ntb and ( j+  1)th odd (even) ions on one hand, and the nth and jth odd 
(even) ions on the other. The absolute difference In-jl measures the distance 
between the odd (even) ions of cells n and j. The virtue of this interaction potential, 
commonly encountered in physical systems such as the king ferromagnetic lattice, is 
that the range of interaction can be varied continuously. Indeed, when S increases, the 
range of interaction (the coupling coefficient Vlnj(Vhi) between the odd (even) ions 
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on cells n andj) continuously increases. For a given S, Vln,(V2,) decreases when In - j l  
increases. Experimentally, one can relate the parameter S to the number of neigh- 
bouring interactions. Due to the mathematical complexity and in order to model the 
physical situations where the weight of the long-range coupling is smaller than the 
short-range one, we have neglected long-range interactions between odd and even 
ions. 

When S=O, the model reduces to a second nearest-neighbour problem. On the 
other hand, the Limit S-1 defines the infinite-range problem. Vln,(V2,) is constructed 
such that the total potential experienced by one ion due to all others is finite for all S 
so that a thermodynamic limit exists. Then we have 

2 Vhj=Ji (i= 1,2). 
j#" 

(3) 

The nonlinear short-range. potentials between ions are a polynomial approxima- 
tion to a realistic potential such as Lennard-Jones and Morse potentials and have the 
form 

U1.=+k2(~,- U.)'++~~(O.-U.)~+~~~(U~-U")~ ( 4 4  

U, = % z ( ~ n + i  - ~ J ~ + f M u , + i  - 0.Y +%4(un+1- (46) 
where kz, k3, k4 are force constants. From Hamiltonian (l), the equations of motion 
for U, and U, are 

M I i i . = h ( ~ .  - 2 ~ .  + ~ ~ - 1 )  + k 3 ( ( ~ .  - u J -  (U"- U"-,)') + k4((Dn - u ~ ) ~ -  (un - 

The overdots (' .) denote time differentiation. 
Let 

and define the auxiliary quantities 

where 

kz k3 k4 
- MI Mi MI 

F -- (v,-2un + U"J +- ((U, - U J -  (U. - u.-,)2) +- ((U. - u33- (U" - u , 4 3 )  

(74 



with L1, and La satisfying the recursive relations 

(U.+I+u"-l-=u") ( 9 4  
J 1  (1-S) (S + l/s)Ll"=Lb+l+ L1.-1+-- 
MI S 

(u.+1+ u,-,-2Su.). (96) 
Jz (1-S) (S+ l /S)L= Lail + 
Mz S 

We can apply the continuum approximation to the displacement of each mass 
separately and write 

U&) - 4 x ,  t) 
U n ( O - - + ~ ( x , t )  
MO + L i ( X ,  4 
F,(u,(t), u,(t))+Fi(u(x, 0, 4 x 7  0)  (10) 

+u,-~ =2u + 4azu,+ (4/3)a4u,+ O(E~+=)  

~ . ~ ~ = 2 ~ + 4 a ~ u , + ( 4 / 3 ) a ~ u , + O ( ~ ~ + ~  
Lm+1+L,,-l=2Li+4aZL,+ (4/3)a4L,+ O ( E ~ * ~ ) .  

In equation (10) E is a small scaling parameter ( E  is O(dl0)) such that dldx is O(E) and 
a/at is O(E) and we have neglected terms of higher order than E ~ "  (a=1,2). The 
parameter a is determined by the balance of the highest-order dispersive and 
nonlinear terms. For the quartic potential (k3=O) the fourth-order dispersive term 
and nonlinear term are balanced if U is 0(1), i.e. with a = 1, but for the cubic potential 
(k,=O) if U is O(E), so that a=2. Using these approximations where we keep terms up 
to fourth derivatives, equations (9a) and (9b) yield 

(114 

u-4~'- 

+ (4/3) - (1 - S)Z 

where F,=F,(u, U) and F2= Fz(u, U) are given in the appendix. 
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3. Soliton solutions in the continuum approximation 

3.1. The &coupling ansatz 

The two equations (110) and ( l l b )  are decoupled by using the following ansatz 
[I, 17,221 
U =u(u+ blau,+ (b2/2)a2u_+ (b3/6)a3u,,+ (b4/24)a4uu,+ boa4u:u,). (12) 
To determine the constants U, blba bb b4and bo, the procedure is to substitute o(x, t) 
and its derivatives in equations ( 1 1 )  and impose the condition that the two equations 
for u(z, t) resulting from ( 1 1 )  are equivalent. In the continuum approximation there 
are two values for U: U= 1 and U= - M,/M,. By analogy with the linear chain U= 1 
corresponds to an acoustic mode where the ions move in phase with slowly varying 
amplitudes. The value U =  - Ml/M2 gives an optical mode where the ions move out of 
phase with amplitude ratios equal to U. In the following, we shall examine each mode 
separately. 

3.2. Acoustic mode (u~= 1) 

3.2.1. Kink and pulse soliton solutions. Following the procedure described earlier we 
can calculate the coefficients in (12) for the acoustic mode and obtain 

b l = l  

ZMI-MZ l + S  ( 1 3 4  
b3 = 6M0 ( 3MIMz +Jo-) (1-S)' 

(113)Mz- (b:/4)Ml+Jo- '+' (1-S)Z 

with 

and 

Jo= 2(J2/M2 - J,/M,)/k,. - -  (13c) 

The nonlinear coefficient bo of (12) depends on the symmetry of nonlinear short-range 
potentials and has been determined for the case of the quartic potential (k3 = 0 in (4))  
and for the case of the cubic-quartic (k3#O). 

In the first case (quartic potential), the two equations arising from (11) are 
equivalent if bo is given by 

Then, one of the identical equations obtained is given by 
. .  

U ,  - c'(S)U, = ~ ~ ( U J ~ U ,  + h(S')uXm +f(S)u,. (15) 
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For the case of the cubic-quartic potential, the two equations obtained from (11) 

JzlMl= JllMl and bo=O (16) 

are identical if the compatibility conditions 

are satisfied. With these conditions, the single equation obtained is of the form 

U,- c2(S)u,= 2 p u , ~ ,  + 3 q ( ~ , ) ~ ~ ,  + h(S)u, + ~ ( S ) U ,  (17) 
which reduces to the form of a generalised Boussinesq (G-Bq) equation for Z =  U, [9] 

(18) Z,- c*(S)Z,=p(z2), + q(Z3),+ h(S)Z- +f(S)z, 
where 

c2(S) ='(2k&/M,)(b2/2+2J1(1 +S) /kz( l  -S)2) (194  
is the sound velocity 

p = Za3k3Mo/M: (19b) 

q =2a4k4Mo/M: (19c) 

and 

are the nonlinear coefficient while 

h(S) = (2k2a4/M1)(b~/24+2J,(1+S)/3~(1-S)2-2Sbz/(l -S)') (19d) 
and 

f(S) = 4Sa2/(1 - S)' (194 
are the dispersion coefficients. 

As expected, for S=O equation (18) reduces to the G-8q equation, the well known 
limit of diatomic chain with nonlinear cubic and quartic interaction potential between 
first neighbours in the continuum approximation [22]. Moreover, the results of the 
monatomic chain are obtained if M,=M, 1241. An equation similar to (17) was 
derived recently by Roseneau [25] for a weakly nonlinear ID lattice with N neighbour- 
ing interactions by using a method which correctly preserves the essential features of 
the discrete system. But no special link was assumed between the coupling coefficients 
of different neighbouring interactions. Consequently, the coefficient of the U,, term, 
as well as that of the nonlinear interaction potential term, were given as sums over the 
N interacting partides. But in our equation (17), the coefficient of U,, depends on the 
parameter S which measures the range of interaction. This is due to the exponential 
form (li) of the elastic coupling coefficients between the particles of the lattice. 

Neglecting the Z 2  and Z 3  terms in (18) and looking for small amplitude solutions 
of the form Z(x, t)  = 2, sin@ - of), we obtain the dispersion relation for the phonons 

w'=(c2k2-hk4) / ( l+fkz)  (20) 
where OJ and k denote respectively the frequency and the wavevector. Equation (20) 
shows that the value of the range parameter S mainly contributes to the form of the 
dispersion relation. The frequency o2 remains positive if k satisfies, for each value of 
S, the following condition 

c2-  hk2>0. 
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Looking for soliton solutions of the form 

Z = Z ( x - u t ) = Z ( ~ )  (21) 

(~Z-CZ(S))Z**=P(Z2)**+q(~3)*~+h'(S)ZZS55 (22) 

h'(S)=h(S)+f(S)uZ. (23) 

the full nonlinear equation equation (18) yields 

where 

The kink-type solutions for (22) are presented in [24]. The analytical expression for 
the general case (p#O, q # O )  is given as 

with 
[4pZ+ 18q(uZ- C 2 ) y i r  2p 

P I = (  [4pZ+ 18q(uZ- cZ)]"ZT 2p 

and 
L=2(h'/(uZ-cZ))"2. 

In (24) n, defines the initial position of the soliton while U is the velocity. The width of 
the soliton depends on both P, and L .  The + (- ) sign (in (24)) means that the soliton 
can produce rarefaction (compression) in the lattice. The parameter sgn(h') = ir 1 
depending on the sign of h'. The two special cases q=O or p=O reduce to the 
Boussinesq ( ~ d  or Modified Boussinesq (M-Bq) solitons: 

(9 ~ q ( p # O , q = O )  

(ii) M - ~ q  ( p = O , q # O )  

U(X, t )  = &2(2h'/q)'" tan" exp - (n - ut) +x, . (2) { (i 11 
The width and the amplitude of these solutions depend on the range parameter S and 
may, respectively, increase and decrease as S increases [9, lo]. For S=O, equation 
(24) reduces to the well-known soliton solution of the G - ~ q  equation for Ml#M2 [22] 
and for M,=M2 [NI. As in the case of monoatomic chains [9], the analysis of the 
possible types of solutions for equation (27) allows us to find subsonic and supersonic 
kink (pulse) solitons of dilatational or compressive type, and the condition of 
existence of subsonic solitons for both cooperative and competitive short- and long- 
range interactions. 

3.2.2. Soliton solutions in the weakly nonlinear case. In order to obtain the low 
amplitude breather solutions of equation (17) we use a simplified version of the 
expansion method [26]. We assume 

U"EU1 (29) 
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where E<<& and introduce the slow space and time independent variables: 

Accordingly, the displacement field u(x,t)  in (17) is regarded as 
U&, x I ,  . . . , to, t , ,  . . .) and the derivative operators (alax) and (a/&) are expanded as 

x. = E.X t, = E?. (30) 

aiax = + taiax, + . . . 
aiat=aiatQ+&aiat,+. . . . 

To s i m p l i  the terminology thereafter we write x for xQ, Xfor x,, t for to, T for t, and U 
for uI. Then we assume for U a modulated wave solution of the form [9, U ]  

u=F,(X, T)+(F(X, T) e’@+c.c)+z(F,(X, T) e”+c.c) (32) 
which contains a DC term, a first- and a second-harmonic. Here 0=kx-wt, the 
frequency o and the wavevector k are related by the dispersion relation given by (20). 
Substituting (29) and (32) into (17) and equating DC, first and second harmonic terms 
we obtain 

E ~ ( F ~ , + C ~ F O ~ -  2pk’]F]$) + O(s3) = 0 (334 
{E((  -2ikc’ + 4ihk3+2ifkoz)Fx- 2iru(l +fk2)FT) 

+ ~’((1 +fkz)Fn+ (fioz+6hkZ- ~’)Fxx- 4 f K ~ F m  
-4ipk3F*F, + 2pkZFFox+ 6k4qlFI’F))eiB+ O(z3) = 0 

{ ~ ( ( - 4 o ~ + 4 k ~ c ~ -  16hk4- 16fk20’)F1+2ipk3(F)2)}e’i~+ O(E’) =O. 
(336) 

(334 

C=X-V,T Z = E T  (34) 

From (33) and introducing new scales 

with 
k (cZ-2hk2-hfk4) 

U,= (dw/dk)=- o (l+fkz)z . 
we obtain 

F,=2ipk3(F)z/(4wZ-4kZcZ+16hk4) 

and 

where 7 is the integration constant, subject to the following nonlinear equation: 

-iF,+ PFEE+QIF1zF+B‘F=O 
with 

(35) 

kZ (f~’+h)(c~-Zhk’+hfk~) 
2w (C’-hkZ)(l +fkZ)’ 

p=- 
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Figure 1. (Acoustic mode.) Plot of the quantity PI Q, = PQo’(1- fp) as afunction of the 
range parameter S and for different values of J $ ( i = l , Z )  with M,=UM,=l, k=0.2, 
&=& = k4= 1 and a= 1. Solid line: J,=U,= - 0.005; dashed tine: J ,  = U,= 0.01; dotted- 
dashed tine: 3,=U,=0.05, dotted Line: 3,=U2=0.1. 

and 

Putting 
F= G exp( - iB’t) 

-iG,+ PG55+ Q I GI2G = 0. 

(41) 

(42) 

equation (38) yields the cubic nonlinear Schrodinger (NU) equation 

The signs of the dispersive coefficient P and nonlinear coefficient Q determine the 
character of the solutions of (42). If PQ<O, equation (42) has an envelope soliton 
solution which has a vanishing amplitude at 151 +m. If PQ<O, a typical solution of 
(42) is a dark (or envelope hole) soliton where the depression of an envelope 
propagates as a soliton with a finite amplitude at I E I + m . 

In figure 1, we plot the variations of the quantity PQ (multiplied by 4w2(1+ fkz) 
which is always positive) as a function of the range parameter S, for d&erent values of 
Ji (i = 1,2), and for kz = k3= k4= 1, M I  =uMz = 1, a=  1, and k=0.2. 

For 3, =U, = 1 (1 = 0.1,0.05, Om), PQ can be alternately negative and positive as 
S increases. When J,=U2=-0.005 (negative) we have PQ<O for OsSGO.77  and 
PQ>O for 0.77<SG0.83 (the case S>0.83 is not physical because it gives cz<O). 
When Jl=Uz=-O.l we have PQ<O for OsSGO.38 and c2<0 for S>0.38. These 
results, although strictly valid only in the continuum approximation (small4 limit), 
show a new possible alternation of envelope and dark-soliton solutions which depends 
strongly on the long-range interactions (values of Ji and S).  This alternation of 
solution can be obtained not only for competitive interactions ( J i < ,  kz>O) as in the 
case when lirst and second-neighbour interactions are present, but also for coopera- 
tive interactions (Ji>O. kz>O) [22]. 

Let us now give an explicit solution for the case PQ>O. 
For PQ>O the envelope soliton solution of (42) is given by [28,29] 

G(5, z ) = A  ~ech((Ql2P)~’*A(~-u~t)) exp( -i(ue/2P)(~-ucr)) ~ (43) 
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where A is the amplitude 

A = ( ( ~ - Z W M ~ P Q ) )  
where u~-2ueu,>O, and U, and U, are the velocities of the envelope and the camer 
waves. In the present case we obtain E' = 0 from (40) because we have localized the 
solution such that Fo4, F and its derivatives tend to zero for 151 + - . From equations 
(41), (34), (30) and (29) one can calculate 

with 
Fe""-"=A sech((x- V,t)/LJ e'(&-*') (45) 

V,=u,+&(uJP) (464 
K = k - &(U,/ZP) (46b) 
51=-(&u~/zP)(ug+&u~IP)+0 (464 

and where the quantity 
2P 

Le = 
&(U: -~2u,uC)'n 

is the width of the envelope. 
Substituting expression (43) in (37) and integrating one obtains 

Fo=~A(2P/Q)"z  tanh((AQ/ZP) (5-u.tlP)) +D (47) 
where D is the integration constant. Thus from (31) we obtain 

u=EA, tanh((x-V,t)ILe)+EA sech((x-V,t)/LJ cos(&-Bt) 

+&'A, sechz((x- Vet)/Le) sin(Z(Kn - Bt)) (48) 

(49) 

where 

A m = A  - uz-  zkzp 2 (ZPlQ)'". 
g c  

Equation (48) has the form of an asymmetric envelope, i.e. the amplitude at 
infinity is finite and of opposite sign at x =  k m . It is a superposition of a kink (DC 
term) and envelope solitons coupled and both moving at velocity V,. 

3.3. Optical mode (a= - M,IMd 
Following the paper by F'nevmatikos et a1 [ZZ], the compatibility condition is only 
possible if the cubic term of the interaction potential is set to zero (k3=O). In this case 
we keep only terms to O(c3) so that the terms uu,' and U'& are of (2) and can be 
omitted if their coefficients are of O(1). 

From the compatibility condition we obtain 
b l = l  

b3= b4= bo 
where MO and Jo are given, respectively, by (13b) and (13c). 
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The equation for u(x, t )  is 

U,+ C 1 ( S ) U ,  + czU+C,U3=O 

where 

As expected, for S = 0 

and the equation (51) reduces to the Pnevmatikos et af.  form [22]. We shall discuss the 
various solutions of equation (51). 

If c,<O(k,<O), c3>0 and c , < O  there are kink solutions for U [30] 

and 

L= (2( I c1 I - uZ)/lCz I)'". (56) 
As in the previous mode (acoustic mode), the width of the topological kink 

obtained here depends on the range parameter and may increase as S increases [lo]. 
If c2>0, we can find oscillating solutions by transforming (51) into a nonlinear 

Shrodinger (NLS) equation for the slowly varying complex envelope function @(x, t )  if 
we look for solutions of the form 

u(x, t )  = @(x, t )  exp(i(kr - wt)) + cc 

oz(k) =c: - ~1 k Z  

(57) 

(58) 
at the centre of the Brillouin zone (k#O) for the optical branch. Working in a 
reference frame moving with the group velocity ug = dw/dk, we obtain from (51) and 
(57) a NLS equation for the first harmonic @ ( E ,  r), with 

where k and w are chosen to satisfy the linear dispersion relation 

.g=x-u,t and r=€t  (59a) 

i@r +$@E + @ I @ 1' = 0 (596) 

QO= - 3 ~ 3 1 2 ~ 1 .  (60) 

where we neglect terms like @=, and p = (dzw/dkZ) is related to the dispersion while 
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We note that, for S = 0, equation (59) reduces to the Pnevmatikos et al. form [22]. For 
pQ,>O (clc3>O) it admits envelope solutions which, for the discrete diatomic chain, 
define spatially localized envelope solitons in the form of a wavepacket with an 
envelope function that modulates an essentially harmonic carrier wave. For pQo<O 
(c,c3>O) we have dark solitons where the envelope has a finite amplitude as I + m 

and a compression near the soliton position. 
In figure 2, we plot the variations of the quantity pQo as a function of the range 

parameterS,for differentvaluesofJi(i=1,2), andforb=k,=l ,M,=M2=l ,  a = l  
and k=O,2. 

For Jl=U,=l (1=0.1, 0.05, -O.l), the quantitypQ, decreases and changes sign 
as S increases. For small values of S (SSO.l), pQo is positive, when D O . 1 ,  pQo is 
negative. As in the previous case (acoustic mode), the above results show a new 
possible alternation of envelope and dark soliton solutions which can be obtained for 
both competitive (.Js<O, k,>O) and cooperative (J,>O, k,>O) short- and long-range 
interactions. Let us now give explicit solutions for the case pQ,>O. 

ForpQ,>O the envelope soliton solution of (59) is given by [28,29] 

@(E,  z) = A  sech((Q/2P)1'2A(E-u~z) exp( -i(ue/2P)(E- u.z)) (61) 
where A is the amplitude 

A ((u~-~u,u~)/(ZPQ))'" (62) 
where U: - 2u,uc> 0, and U. and U, are the velocities of the envelope and the camer 
waves. From equations (57), (59a), (61) and (62) we then obtain the symmetric 
envelope solution 

U = EA sech((x - V&LJ cos(& - Qt) (61) 

v,= Dg+E(U./P) (6W 
K = k - E(UC/2P) (626) 

(62) 

with 

= - (&U,/ZP) (U,+ EU,/P) + W 

lu on 

0 0.2 s 0.4 0.6 
FigureZ. (Optical mode.) Plot of the quantitypQ, as a function of the range parameter S 
and for differenl values ofJi(i= 1,2) with M,=2Mz= 1, k=0.2, k2= k,=k,= 1 anda= 1. 
Solid line: J,=U,=-O.l; dashed line: J,=U,=O.OS; dotted line: J,=Uz=-O.l. 
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and where the quantity 

2P 
L, = 

&(U:- 2U,U,)”2 

is the width of the envelope. 
In contrast to the previous case (acoustic envelope), equation (61) has the form of 

a symmetric envelope. For S = 0, it reduces to the result obtained for a diatomic chain 
with first and second nearest interactions [22]. 

4. Concluding remarks and brief summary 

In this paper we have studied the effect of long-range interactions on acoustic and 
optical soliton-like excitations in a nonlinear (ID) diatomic lattice model inwhich the 
atoms were assumed to interact via a cubic andlor quartic nonlinear short-range pair 
potential and linear long-range pair potential. This long-range coupling falls off 
exponentially as the interparticle distance increases and has the virtue that the range 
of interactions can be varied continuously in a controlled manner. 

We first used the continuum approximation which leads to nonlinear coupled 
equations for the displacement fields of the two different masses. We applied a 
decoupling ansatz to reduce, in the small-amplitude limit, these equations of motion 
to the well known generalized Boussinesq equation ( G B ~ )  which admits acoustic and 
optical soliton solutions. 

In acoustic mode, both supersonic and subsonic kink (pulse) solitons of dilata- 
tional or compressive type are found. The subsonic soliton cab exist for both 
cooperative and competitive short- and long-range interactions. Considering the 
small-amplitude nonlinear oscillations and using the multiple-scale expansion tech- 
nique, we have derived a cubic ms equation of motion for the first-harmonic term of 
the displacement. The analysis of the sign of the dispersive and nonlinear coefficients 
of this equation shows a possible alternation of envelope and dark soliton solutions 
which depends on the long-range interactions. It can be observed for both competitive 
and cooperative short- and long-range coupling. The modulated wave solution of the 
asymmetric envelope were calculated. Similar results have been obtained for the (ID) 
monoatomic lattice model [9]. 

In optical mode, considering the small-amplitude nonlinear wave, we have derived 
a G4 equation or, after using the multiple-scale expansion technique, a NLS equation 
which allow us to calculate, respectively, optical kink Oi symmetric envelope solu- 
tions. As in the acoustic mode, the analysis of the sign of the dispersive and nonlinear 
coefficients of the ms equation shows a possible alternation of envelope and dark 
soliton solutions which can be observed for both competitive and cooperative short- 
and long-range coupling. An interesting problem related to these results is that a 
nonlinear system which supports envelope solitons is known to exhibit modulation 
instability. Consequently, the results obtained above reveal clearly that the long-range 
interactions will also control the modulation instability regimes. Another important 
point to outline is that, by setting S=O1 our results, reduce to those obtained from the 
model with first and second neighbour interactions. 
In order to partially take into a w u n t  the lattice effects that will occur in a real 

condensed matter system, it should be interesting to extend the study using the semi- 
discrete limit in which the envelope of a soliton is determined in the continunmlimit 

. .  
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while the fast oscillations of the quasi-harmonic carrier inside the envelope are treated 
exactly. 

Appendix 

The quantities Fl and Fz used in equations (11) are given as 

F --{U -U - au,+ a ' ~ , - ~ ~ u , - ~ a ~ u , + )  a%,] 2k2 
1- M I  

4k3 
MI 

+-{(U - U) (nux - azu,++a3u,- $a4u,) 

-a%:- a%& + 2n3uxu, - +a4u,ud 

I + 6(u - U) (a%:+ a4&- 2a3u,u,+$a4uxu,) -4a3uz + l2~'u:u,) 

U - U + au, + a%, i- $?aa3um+ - U, 3 

+ a'u, + +a3u, + - U,, 
3 

+ - (U- U ) ~ + ~ ( U  - U)' au,+ a2u,+$a3u-+- U, "I Mz 3 

+ 6(u - u)(a'u:+ a4uL+2a3uxu,+ $a"u,u,) +4a3uu: + 12a'u:u, . I 
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